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Abstract
We establish a one-to-one correspondence between (1) quantum teleportation
schemes, (2) dense coding schemes, (3) orthonormal bases of maximally en-
tangled vectors, (4) orthonormal bases of unitary operators with respect to the
Hilbert–Schmidt scalar product and (5) depolarizing operations, whose Kraus
operators can be chosen to be unitary. The teleportation and dense coding
schemes are assumed to be ‘tight’ in the sense that all Hilbert spaces involved
have the same finite dimensiond, and the classical channel involved distin-
guishesd2 signals. A general construction procedure for orthonormal bases
of unitaries, involving Latin squares and complex Hadamard matrices is also
presented.

PACS number: 03.67.−a

1. Introduction

Teleportation and dense coding are two processes, which stood at the beginning of modern
quantum information theory. They both demonstrated radically new features of quantum
information as opposed to classical information, in that both would be impossible without
the assistance of entangled states. Indeed, the attempt of using the properties of a classically
correlated system shared by sender and receiver to improve the transmission rate of a classical
channel can easily be seen to be hopeless. But this is precisely what happens in teleportation
and dense coding, and dramatically so, because without entanglementassistance, teleportation,
i.e., the transmission of quantum information on a classical channel, would not only be less
efficient, but virtually impossible.

In the original papers [BW, BB] the new possibilities were demonstrated by giving an
explicit example, based on qubits. It was clear early on that extensions to systems with higher-
dimensional Hilbert spaces were possible, not only to powers of 2, by running the process
several times, but to any dimension 2� d < ∞ [BB].

The task set in this paper is to do this systematically, and to classifyall schemes for
teleportation and dense coding. There are several reasons for doing this. The first is, of course,
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to take these miracle machines apart and to analyse what makes them work: what is the
mathematical structure one really needs to set up such a scheme? For the present author one
motivation of this kind was to understand the surprising observation that each of the published
teleportation schemes also works as a dense coding scheme, and conversely: sender Alice and
receiver Bob merely have to swap the equipment they use. An attempt at a direct proof of this
failed, and indeed, as discussed below, the statement fails in general, but is true in the special
case of ‘tight’ schemes.

The second reason for attempting a complete classification of teleportation schemes
is more practical. In spite of amazing progress in recent years, experiments in quantum
information processing are still quite difficult. Hence, for realizing a teleportation scheme it
is useful to have a systematic overview of the options, before going on to find the one which
is the easiest to implement. This also goes for approximate realizations. And in order to find
feasible approximate teleportation schemes it is probably once again necessary to understand
the manifold of exact realizations.

The aim of determining all schemes is not quite achieved in this paper, in two respects.
Firstly, we will only look at the case when dense coding and teleportation are realized optimally
with minimal resources, in the sense of Hilbert space dimensions and number of distinguishable
classical signals. As in the well-known qubit case, this means that an entangled state between
systems of the same dimensiond as the input systems is used, and the classical channel
distinguishesd2 signals. That is, the classical capacity of the quantum channel is exactly
doubled by dense coding, and teleportation requires twice as much classical channel capacity
as the quantum capacity of the channel set up by this scheme. We will call schemes with
these dimension parameterstight. As mentioned above, for these dimensions the symmetry
between teleportation and dense coding holds perfectly. Classifying all schemes beyond the
tight case appears to be more difficult because there is too much freedom, which cannot be
parametrized in a simple way (see, however, [BD]).

The second respect in which this paper falls short of a complete classification is that we can
only reduce it to another ‘standard’ problem, namely the construction of orthonormal bases of
unitary operators with respect to the scalar product(A,B) �→ d−1tr(A∗B). In the final section
we provide a fairly general construction for such bases. However, even this construction has
to rely on other well-known but not completely classified combinatorial designs, namely
Latin squares, and complex Hadamard matrices. This suggests that a complete construction
procedure for all unitary bases would be at least as difficult as a complete classification of
Latin squares or Hadamard matrices, and hence hardly a promising task.

The paper is organized as follows. In section 2 the main theorem is stated: an equivalence
in the tight case between teleportation schemes, dense coding schemes, orthonormal unitary
bases, bases of maximally entangled vectors, and so-called unitary depolarizers. Basic
consequences of the theorem are discussed. Section 3 contains the proof, divided into
subsections, each devoted to some implication in the big equivalence. In writing the proof
an attempt was made to include also simple steps explicitly, and to make as transparent as
possible why the tightness condition is crucial. Finally, in section 4 we present the ‘shift and
multiply’ construction of unitary bases, which are then classified in terms of Latin squares and
Hadamard matrices.

2. Main result

In order to state our result we use the following notation and terminology: WhenH is a
Hilbert space, we denote byB(H) the space of bounded linear operators onH. A channel
converting quantum systems with Hilbert spaceHin into systems with Hilbert spaceHout is a
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linear operatorT : B(Hout) → B(Hin), which is completely positive [Da, Pa] and normalized
as T (1l) = 1l. A (discrete)observable F on H over an output parameter spaceX is a
collection of positive operatorsFx ∈ B(H) such that

∑
x Fx = 1l. A density operator on

H is a positive operator with trace 1. The basicprobabilistic interpretation of these objects
is fixed by the prescription that tr(ωT (Fx)) is the probability to get the measuring result ‘x’
on systems prepared according toω, before passing through the channelT. Finally, we call a
vector� ∈ H ⊗ H maximally entangled, if it is normalized, and its reduced density operator
is maximally mixed, i.e., a multiple of1l:

〈�|(A⊗ 1l)�〉 = (dimH)−1tr(A). (1)

Let us set up the equations describing dense coding and teleportation in this language. In
both cases, the beginning of each transmission is to distribute the parts of an entangled stateω

between sender Alice and receiver Bob. Only then Alice is given the message she is supposed
to send, which is a quantum state in the case of teleportation and a classical value in case of
dense coding. She codes this in a suitable way, and Bob reconstructs the original message
by evaluating Alice’s signal jointly with his entangled subsystem. Fordense coding, assume
that x ∈ X is the message given to Alice. She encodes it by transforming her entangled
system by a channelTx, and sending the resulting quantum system to Bob, who measures an
observableF jointly on Alice’s particle and his. The probability for gettingy as a result is
then tr(ω(Tx ⊗ id)(Fy)), where the ‘⊗id’ expresses the fact that no transformation is done to
Bob’s particle while Alice appliesTx to hers. If everything works correctly, this expression
has to be 1 forx = y, and 0 otherwise (see equation (3)).

Let us take a similar look atteleportation. Here three quantum systems are involved: the
entangled pair in stateω, and the input system given to Alice, in stateρ. Thus the overall initial
state isρ ⊗ ω. Alice measures an observableF on the first two factors, obtaining a resultx
sent to Bob. Bob applies a transformationTx to his particle, and makes a final measurement of
an observableA of his choice. Thus the probability for Alice measuringx and for Bob getting
a result ‘yes’ onA, is tr(ρ ⊗ ω)(Fx ⊗ Tx(A)). Note that the tensor symbols in this equation
refer to different splittings of the system (1⊗ 23 and 12⊗ 3, respectively). Teleportation is
successful if the overall probability for gettingA, computed by summing over all possibilities
x, is the same as for an ideal channel, i.e. tr(ρA), as in equation (2).

The only relationship between the Hilbert spaces involved, which this description requires,
is that the input and output spaces of the teleportation line are the same, since the whole
teleportation process is equivalent to the identity. In some sense the best results (minimal
dimension for the Hilbert spaces carrying the entangled state, best ratio of achieved capacity
to capacity used) are obtained in the special case, where all Hilbert spaces have the same
dimensiond, and exactly|X| = d2 signals are distinguished. We call this thetight case, and
the main theorem refers only to this case.

Theorem 1. Let H be a d-dimensional Hilbert space (d < ∞), and X a set of d2 elements.
Consider the following types of objects:

(1) Teleportation schemes, consisting of

• a density operator ω on H ⊗ H
• a collection of channels Tx : B(H) → B(H), x ∈ X
• an observable Fx, x ∈ X onH ⊗ H such that, for all density operators ρ on H, and
A ∈ B(H): ∑

x∈X
tr(ρ ⊗ ω)(Fx ⊗ Tx(A)) = trρA. (2)
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(2) Dense coding schemes, consisting of the same objects as a teleportation scheme, but
satisfying, instead of (2), the equation

tr(ω(Tx ⊗ id)(Fy)) = δxy. (3)

(3) Bases of maximally entangled vectors, i.e., families of maximally entangled vectors
�x ∈ H ⊗ H, x ∈ X such that

〈�x |�y〉 = δxy. (4)

(4) Bases of unitary operators, i.e., collections of unitary operators Ux ∈ B(H), x ∈ X such
that

tr(U∗
x Uy) = dδxy. (5)

(5) Unitary depolarizers, i.e., collections of unitary operators Ux ∈ B(H), x ∈ X such that
for any A ∈ B(H):∑

x

U∗
x AUx = d tr(A)1l. (6)

Then, given any object of any one of these types, one can construct an object of each of the
types, using the following equations:

ω = |�〉〈�| with � maximally entangled. (7)

Fx = |�x〉〈�x | (8)

Tx(A) = U∗
x AUx (9)

�x = (Ux ⊗ 1l)�. (10)

The logical structure of this result is maybe slightly unusual, so we begin by giving some
examples of how it is used. We can use it, for example, as a construction procedure: once
we are given a unitary basis, we can obtain from equations (7)–(10) a teleportation scheme
and a dense coding scheme. Moreover, since we could also start with these schemes, ending
up with the unitary basis we are assured thatevery teleportation or dense coding scheme is
obtained in this way, i.e., this construction is exhaustive. In particular, we learn that any tight
teleportation scheme is necessarily of a very special form: the entangled stateω must be pure
and maximally entangled, the channelsTx must be unitarily implemented, and the observable
F must be a complete von Neumann measurement.

Another result contained in this theorem is the amazing equivalence between (1) and
(2): any teleportation scheme works as a dense coding scheme, and conversely. Alice and
Bob merely have to swap their equipment to convert one into the other. We must emphasize,
however, that the tightness condition is absolutely crucial for this equivalence. For simplicity,
we will discuss this only in the case that|X| = n is not fixed to bed2, leaving aside the more
difficult question what kind of trade-off between resources becomes possible whenω lives on
H1 ⊗ H2, with dimensions other thand ⊗ d.

The basic difference between teleportation and dense coding is that the parametersd and
n have opposite roles: for teleportation,d describes the size of the signal to be sent, andn
describes a resource, so the problem becomes more difficult when we increased and decrease
n. For dense coding, it is exactly the opposite. Therefore, it is easy to show that teleportation
(resp. dense coding) schemes exist whenevern � d2 (resp.n � d2). In fact, for teleportation
one can takeX to be a continuum, and replace the sum in the teleportation equation by an
integral [BD], but the dense coding equation would make no sense then. The optimality of
these dimension inequalities, i.e., that no teleportation (resp. dense coding) scheme exists
with n < d2 (resp. n > d2), is also a corollary of theorem 1. To prove it, suppose we had
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a teleportation scheme withn < d2. Then we could add (d2 − n) irrelevant classical signals
happening with probability zero (Fx = 0), and apply the theorem, which says that allFx

must be non-zero after all. The same reasoning works for dense coding with the operation of
throwing in a few unused Hilbert space dimensions.

Of course, our theorem is efficient as a construction procedure for dense coding and
teleportation schemes only to the extent that unitary bases can be generated. After giving the
proof of the theorem, we will therefore describe the most general construction for such bases
known to us.

3. Proof of theorem 1

3.1. Proof of the implications ‘3 ⇐⇒ 4’

Implicit in the formulation of the theorem is the claim that equation (10)�x = (Ux ⊗ 1l)�
not only determines�x in terms ofUx but also, conversely, determinesUx in terms of�x. This
connection is based on a general construction, by which thed2 matrix elements of an operator
A : H → H are identified with thed2 components of a vector�. This identification depends
on the choice of a maximally entangled vector�. By choosing appropriate orthonormal bases
ek, k = 1, . . . , d, in the first and second tensor factor, such a vector can be written in ‘Schmidt
form’ as

� = 1√
d

∑
k

ek ⊗ ek. (11)

Then a one-to-one correspondence between operatorsA ∈ B(H) and� ∈ H ⊗ H is given by
the equation〈ek |Ae�〉 = √

d〈ek ⊗ e�|�〉. We will use this in the form

� = (A⊗ 1l)� = (1l⊗ AT)� (12)

where the transpose operationA �→ AT is defined in the basisek. Then if A and� and,
similarly, A′ and� ′ are related in this way,

〈�|(B ⊗ 1l)� ′〉 = 1

d
tr(A∗BA′) (13)

for arbitraryB ∈ B(H). Thus� is maximally entangled iff this expression (forA = A′)
is equal tod−1 tr(B), i.e., iff A is unitary. Moreover, settingB = 1l, the scalar product of
vectors�,� ′ is translated tod−1tr(A∗A′) in terms ofA, A′. Taking all this together, we get the
one-to one correspondence between unitary bases and bases of maximally entangled vectors,
as claimed. Note, however, that this correspondence depends on the choice of the reference
maximally entangled vector�.

3.2. Proof of the implications ‘4 ⇐⇒ 5’

This proof is relatively straightforward, since we are talking about only one type of objects,
collections ofd2 unitariesUx ∈ B(H). It is, however, also a crucial step for the entire proof,
since it is here that the consequences of the tightness condition are seen. We will prove this in
a form which is also needed later to establish that the stateω in teleportation and dense coding
schemes is necessarily maximally entangled.

The basic observation concerning matching dimensions is the following.

Lemma 2. D vectors φ1, . . . , φD in a D-dimensional Hilbert space form an orthonormal basis
if and only if

D∑
k=1

|φk〉〈φk | = 1l. (14)
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Of course, this is false when there are more vectors than the dimension of the Hilbert
space. Such families of vectors are called ‘over-complete’. They exist and are an interesting
mathematical structure of their own. On the other hand, fewer vectors than the dimension can
never satisfy (14), because the rank (dimension of the range) of the operator on the left-hand
side is at most the number of vectors.

Proof. It is a well-known fact that (14) holds for any orthonormal basis. Conversely, we find
from (14) that, for eachk, |φk〉〈φk | � 1l, which is the same as||φk||2 � 1. On the other
hand, taking the trace of (14), we get

∑
k ||φk||2 = tr(1l) = D. This is only possible when

||φk||2 = 1 for allk. Hence the operators|φk〉〈φk | are Hermitian projections,and we can invoke
the observation that Hermitian projectionsp1, p2 with p1 +p2 � 1l are necessarily orthogonal.
(For a quick proof, sandwich the inequality between factorsp1, findingp1 + p1p2p1 � p1,
i.e.,p1p2p1 = (p2p1)

∗(p2p1) � 0, and hencep2p1 = 0.) �
We now apply this lemma to a collection ofD = d2 operators inB(H), where this space

is considered as a Hilbert space with a suitable scalar product.

Proposition 3. Consider d2 operatorsK1, . . . ,Kd2 on a d-dimensional Hilbert space H, and
let R > 0 be an invertible operator on H.

Then the following conditions are equivalent

(1) tr(K∗
xR

−1Ky) = δxy , for x, y = 1, . . . , d2

(2)
∑
x K

∗
xCKx = tr(RC)1l for all C ∈ B(H).

Proof. Let us define a scalar product〈·|·〉R onB(H) by

〈A|B〉R = tr(A∗R−1B). (15)

SinceR is positive and invertible, this is indeed a scalar product, satisfying〈A|A〉R = 0 only
forA = 0. Condition 1 then simply says that theKx are an orthonormal basis. By the previous
lemma this is equivalent to the completeness relation (14), so all we have to do is to show that
this relation, adapted to the special scalar product at hand, is equivalent to condition 2 of the
present lemma. The completeness relation is that, for anyA,B ∈ B(H),

〈A|B〉R =
∑
x

〈A|Kx〉R〈Kx |B〉R. (* )

It suffices to evaluate this on rank one operatorsA,B ∈ B(H), since these span the whole
space. We takeA = |φ1〉〈φ2| andB = |ψ1〉〈ψ2|. Then the left-hand side of equation (*)
becomes

〈φ1|R−1ψ1〉〈ψ2|φ2〉 (*LHS)

whereas the right-hand side is∑
x

〈φ1|R−1Kxφ2〉〈ψ2|K∗
xR

−1ψ1〉 = 〈ψ2|Mφ2〉 (*RHS)

with

M =
∑
x

K∗
xR

−1|ψ1〉〈φ1|R−1Kx ≡
∑
x

K∗
xCKx

where we have interchanged the two factors in each term, and introduced the abbreviation
C. Since (*LHS)=(*RHS) for everyψ2, φ2, we findM = 〈φ1|R−1ψ1〉1l. The factor is
readily identified as〈φ1|R−1ψ1〉 = tr(RC). Since operators of the formC spanB(H), the
completeness relation thus becomes equivalent to

∑
x K

∗
xCKx = tr(RC)1l for all C, which

completes the proof. �
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The special case of this proposition, where eachKx is unitary andR = 1
d
1l, is exactly

the relationship between items 4 and 5 of theorem 1. However, there is another consequence
needed later on:

Corollary 4. Let U1, . . . , Ud2 ∈ B(H) be unitaries in a d-dimensional Hilbert space H, and
ρ a density operator such that tr(U∗

x ρUy) = δxy . Then ρ = d−11l.

Proof. Since theUx are an orthonormal set whose cardinality is the dimension, there can be no
null vectors of this scalar product, i.e., tr(A∗ρA) = 0 impliesA = 0. Henceρ is invertible, and
we can apply the previous proposition withR = ρ−1, finding that

∑
x U

∗
x AUx = tr(ρ−1A)1l.

The trace of this equation isd2 tr(A) = d tr(ρ−1A). This holds for allA, i.e.,ρ−1 = d1l. �

3.3. Proof of ‘(3 or 4) �⇒ (1 and 2)’

Suppose now we are given either a basis of unitary operators or of maximally entangled
vectors. Then we can choose a maximally entangled vector� and use equation (10) as in
the proof of ‘3�⇒ 4’ to define the other kind of basis. Equations (8) and (9) then become
explicit definitions of the observableFx and the transformationsTx, respectively, so all the
objects needed for a teleportation or dense coding scheme are defined, and we only need to
verify that equations (2) and (3) are indeed satisfied.

In the teleportation equation an expectation value is generated between a state on the first
and an observable on the third factor of a triple tensor product. This is a consequence of a
similar ‘teleportation equation’ on the level of vectors, which we now state. For later use we
prove a certain converse at the same time.

Lemma 5. Let � ∈ C
d ⊗ C

d be the maximally entangled vector � = d−1/2 ∑
k ek ⊗ ek ,

where ek, k = 1, . . . , d is the standard basis of C
d . Let M ∈ B(Cd ), and µ ∈ C. Then the

equation

〈φ ⊗�|(1l⊗M ⊗ 1l)�⊗ ψ〉 = µ〈φ|ψ〉
holds for all φ,ψ ∈ C

d , if and only if M = dµ1l.

Proof. Inserting the sum defining� we get

〈φ ⊗�(1l⊗M ⊗ 1l)�⊗ ψ〉 = 1

d

∑
k�

〈φ ⊗ eκ ⊗ eκ |(1l⊗M ⊗ 1l)e� ⊗ e� ⊗ ψ〉

= 1

d

∑
κ�

〈φ|e�〉〈ek |Me�〉〈ek |ψ〉 = 1

d
〈φ|MTψ〉

which is equal toµ〈φ|ψ〉 for all φ,ψ iff MT = dµ1l. �
Consider now the term with indexx ∈ X in the teleportation equation (2), with

Fx and Tx defined via equations (8), (9), and (10). Without loss of generality we set
ρ = |φ1〉〈φ2|, A = |ψ1〉〈ψ2|. Then

termx = 〈φ2 ⊗�|�x ⊗ U∗
x ψ1〉〈�x ⊗ U∗

x ψ2|φ1 ⊗�〉.
The first scalar product can be rewritten by substituting�x from equation (10), using equation
(12):

〈φ2 ⊗�|�x ⊗ U∗
x ψ1〉 = 〈φ2 ⊗ ((1l⊗ Ux)�)|((Ux ⊗ I)�)⊗ ψ1〉

= 〈φ2 ⊗ ((UTx ⊗ 1l)�)|((1l⊗ UTx )�)⊗ ψ1〉
= 〈(1l⊗ UTx ⊗ I)φ2 ⊗�|(1l⊗UTx ⊗ 1l)�⊗ ψ1〉
= 〈φ2 ⊗�|�⊗ ψ1 = 1

d
〈φ2|ψ1〉,
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where in the last equation we used lemma 5 withµ= 1/d. Together with a similar computation
for the second scalar product,we get termx = d−2〈φ2|ψ1〉〈ψ2|φ1〉 = d−2 tr(ρA), and equation
(2) follows by summing overd2 equal terms.

Similarly, for thedense coding equation (3) we get

tr(ω(Tx ⊗ id)(Fy)) = 〈�|(U∗
x ⊗ I)�y〉〈�y |(Ux ⊗ 1l)�〉,

i.e., the absolute square of the scalar product

〈�|(U∗
x ⊗ 1l)�y〉 = 〈�|(U∗

x Uy ⊗ 1l)�〉 = 1

d
tr(U∗

x Uy) = δxy,

where we have used in turn equation (10), the maximal entangledness of� (see equation (1)),
and the orthogonality of theUx. This completes the proof of the dense coding property.

3.4. Proof of the implications ‘2 �⇒ rest’

Let us now assume that a dense coding scheme is given. We have to conclude that it is of the
special form given in equations (7)–(10).

Note first that ifω = ∑
α λαωα (λα > 0) is a mixture of states satisfying the teleportation

equation, then everyωα also satisfies it. Hence the assumption is also satisfied for each pure
componentωα , and we can first analyse the problem assumingω to be pure. In order to show
thatω indeed is pure, we only have to verify that the givenF, T are consistent only with one
pure state. So for the moment we will assume thatω = |�〉〈�| is pure.

The next step is a simple general observation on the coding of classical information on
quantum channels, which we isolate in a lemma.

Lemma 6. Let K be a D-dimensional Hilbert space, and σx, Fx ∈ B(K), for x ∈ X, a
set with D elements. Suppose that each σx is a density operator, F is an observable, and
tr(σxFy) = δxy , for x, y = 1, . . . ,D. Then there is an orthonormal basis �x ∈ H such that

σx = Fx = |�x〉〈�x |.

Proof. Let�x be one of the normalized eigenvectors ofσx with non-zero eigenvalue. Then
sinceFx � 1l, and〈�x |Fx�x〉 = 1,�x must also be an eigenvector ofFx with eigenvalue 1.
Similarly, for anyy �= x theFx � 0, and the normalization

∑
x Fx = 1l forcesFy�x = 0.

Hence the�x are orthonormal, and since their number is the dimension of the space, they must
be a basis. Consequently we have jointly diagonalized theFx and theσ x, with eigenvalues
either 0 or 1. �

We apply this lemma withD = d2 andσx the state after application ofTx to the first
factor, i.e., tr(σxA) = tr(ω(Tx ⊗ id)(A)). This proves equation (8), although it remains to be
seen that each�x is maximally entangled.

Since theσx form a maximal set of pure states, there cannot be a non-zero projectionP
such that, for allx ∈ X,

0 = tr(σx(1l⊗ P)) = tr(ω(Tx ⊗ id)(1l⊗ P))

= tr(ω(1l⊗ P)) = 〈�|(1l⊗ P)�〉.
Hence� must havefull Schmidt rank. We will need the consequence that the equation
(A⊗ 1l)� = (A′ ⊗ 1l)� impliesA = A′.

Let Tx(A) = ∑
α K

∗
x,αAKx,α be the Kraus decomposition ofTx. Then the teleportation

equation is ∑
α

|〈�|(K∗
x,α ⊗ I)�y〉|2 = δxy.
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Therefore,〈(Kx,α ⊗ 1l)�|�y〉 = 0 for all y �= x, and for everyx there must be constantscα
such that

(Kx,α ⊗ 1l)� = cα�x . (16)

Since� has full Schmidt rank, this implies that allKx,α are proportional to each other, i.e.,
thatTx can be written with a single Kraus summand. Of course, the correspondingKx ≡ Ux
must be unitary, and since both sides are normalized, equation (16)�x = (Ux⊗1l)�, possibly
after fixing suitable phase factors (which influence neitherTx nor Fx).

The orthonormality of the�x translates into tr(ρU∗
x Uy) = δxy , whereρ is the reduced

density operator ofω. But then corollary 4 shows thatρ must be a multiple of the identity,
i.e.,�, and each�x is maximally entangled.

Finally, we have to complete the argument for the purity ofω by showing that only one
pure state is consistent with the other dataT, F, encoded inUx. But this is obvious from the
explicit expression� = (U∗

x ⊗ 1l)�x .

3.5. Proof of the implications ‘1 �⇒ rest’

Let us now assume that a teleportation scheme is given. We have to conclude that it is of the
special form given in equations (7)–(10).

The crucial input for this proof is the principle that in quantum mechanics there is no
measurement without perturbation. It enters in the following form, a corollary of the so-called
Radon–Nikodym theorem for completely positive maps. We state it here as a lemma.

Lemma 7. Let H be a finite dimensional Hilbert space, and let Tα : B(H) → B(H) be
completely positive maps such that

∑
α Tα = id. Then there are positive numbers tα such that

Tα = tα id.

Proof. For readers less familiar with dilation theory of cp-maps we include a quick proof based
on the Kraus decompositionT (A) = ∑

β K
∗
βAKβ , which exists for every completely positive

map. Note that by decomposing eachTα in Kraus form, we get a finer decomposition of id,
so we may as well prove the lemma for the case that eachTα is of the formTα(A) = K∗

αAKα.
With A = |ψ〉〈ψ|,

|K∗
αψ〉〈K∗

αψ| �
∑
α

|K∗
αψ〉〈ψ|Kα = |ψ〉〈ψ| .

HenceK∗
αψ = λ(ψ)ψ, with a factorλ(ψ) ∈ C. But thenevery vectorψ is an eigenvector of

the linear operatorK∗
α , which is only possible ifK∗

α is a multiple of the identity. �
A collection of completely positive maps adding up to a normalized one should be

understood as an ‘instrument’ in the terminology of Davies [Da], i.e., a device which produces
classical measurement results ‘k’, such that the probability for obtaining this resultand a
response to a subsequent measurementF on an input stateρ is tr(ρTk(F ))). The channel∑
k Tk then describes the overall state change, when the measuring results are ignored. In

this language the hypothesis of the lemma says that there is no overall state change through
the device, i.e., ‘no perturbation’ of the system. The conclusion is that in that case the output
probabilities aretk, and independent of the input state, i.e., no information about the system is
obtained.

As a first application, we conclude exactly as in the previous subsection that each convex
component of the stateω again satisfies the teleportation equation. Hence we can once more
assume thatω = |�〉〈�| is a pure state. The argument that� is then uniquely determined by
the other data, and hence thatω is pure is the same as in the dense coding case.
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Clearly, this kind of argument is also useful for decompositions ofTx or Fx into sums of
(completely) positive terms. To do this systematically, fix a maximally entangled unit vector
-, so that vectors inH ⊗ H become expressed as� = (A⊗ 1l)- for a uniquely determined
operatorA (see equation (12)). In particular, we can write� = (W ⊗ 1l)-, and the Kraus
decomposition and spectral decomposition of eachFx in the form

Tx(A) =
∑
α

K∗
x,αAKx,α (17)

Fx =
∑
β

(Ax,β ⊗ 1l)|-〉〈-|(Ax,β ⊗ 1l)∗. (18)

Inserting this into the teleportation equation (2) we find a sum overx, α, β, in which each
term represents a completely positive operator, and which sum up to the identity. Hence by
lemma 7, each term has to be multiple of the identity, ˜µx,α,β id, say. This can be written in
terms of scalar products, if we takeρ = |φ1〉〈φ2| andA = |ψ1〉〈ψ2|:
µ̃x,α,β tr(ρA) = µ̃x,α,β〈φ2, ψ1〉〈ψ2, φ1〉

= 〈φ2 ⊗�, (Ax,β ⊗ 1l⊗K∗
x,α)-⊗ ψ1〉〈-⊗ ψ2, (A

∗
x,β ⊗ 1l⊗Kx,α)φ1 ⊗�〉.

Note that the two scalar products on the right-hand side are complex conjugates of each other
apart from a swapping of the arguments(φ2, ψ1) and (ψ2, φ1), which exactly matches the
variable pairing on the left-hand side. Since the equation is to hold for arbitrary vectors
φ1, φ2, ψ1, ψ2, we can hold one pair fixed and find that

〈φ2 ⊗�, (Ax,β ⊗ 1l⊗K∗
x,α)-⊗ ψ1〉 = µx,α,β 〈φ2, ψ1〉, (19)

whereµx,α,β is a factor determined in terms of ˜µ, and the scalar products involving(ψ2, φ1).
With � = (W ⊗ 1l)-, and equation (12) we get

〈φ2 ⊗�, (Ax,β ⊗ 1l⊗K∗
x,α)-⊗ ψ1〉

= 〈φ2 ⊗ (1l⊗Kx,α)-, (I ⊗W∗ ⊗ 1l)((Ax,β ⊗ 1l)-⊗ ψ1)〉
= 〈φ2 ⊗ (KT

x,α ⊗ 1l)-, (1l⊗W∗ ⊗ 1l)((1l⊗ ATx,β)-⊗ ψ1)〉
= 〈φ2 ⊗-, (1l⊗Kx,αW

∗ATx,β ⊗ 1l)-⊗ ψ1〉
≡ µx,α,β〈φ2, ψ1〉

where we have used the notation̄K = (K∗)T for the matrix elementwise complex conjugation
in the Schmidt basis belonging to the maximally entangled state-. Since the above equation
holds for allφ2 andψ1, lemma 5 implies that

Kx,αW
∗ATx,β = dµx,α,β1l, (20)

for all x, α, β.
Let us say that a labelx ∈ X contributes to teleportation, if the corresponding term in

the teleportation equation does not vanish for allρ andA. This is equivalent to saying that for
someα, β the factorµx,α,β is non-zero. For such triples(x, α, β) all three operators on the
left-hand side of equation (20) have to be invertible.

Now since there has to be at least one contributing label,W has to be non-singular, which
means that� hasfull Schmidt rank. Equivalently, the reduced density operatorω1 for the first
factor has no zero eigenvalues. From this we conclude that the non-contributing labels are
precisely those for whichFx = 0. Indeed, we may setA = ρ = 1l, and use the normalization
of Tx to find

0 = tr((1l⊗ ω)(Fx ⊗ 1l)) = tr((1l⊗ ω1)Fx)

SinceFx � 0, and1l⊗ ω1 has only strictly positive eigenvalues, this impliesFx = 0.
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Now let x be a contributing index, and choose some triple(x, α, β) with µx,α,β �= 0.
If we now look at equation (20) for triples(x, α′, β) with arbitrary α′, we getKx,α′ =
(µx,α′,β/µx,α,β)Kx,α, i.e., all Kraus operators ofTx are proportional, and henceTx can be
written with a single Kraus summand,Tx(A) = U∗

x AUx , with a unitaryUx.
Similarly, we find that allAx,β ′ are proportional, which means thatFx = |�x〉〈�x | with

�x = (Ax ⊗ 1l)-.
We can now apply lemma 2 to these vectors�x, setting�x = 0 for non-contributing

labels. The conclusion is that the�x are an orthonormal basis. In particular, all indices do
contribute after all.

Equation (20) and the unitarity ofUx allow us to expressAx in terms ofUx:

Ax = dµx UxW
−1
. (21)

Orthonormality of the�x becomes

δxy = 1

d
tr(A∗

xAy) = dµxµy tr(UyW
−1
(W

−1
)∗ U∗

x ). (22)

Forx = y we find that|µx2| is independent ofx, hence the operators(µx/|µx |)U∗
x are unitary,

and satisfy the hypothesis of corollary 4 withρ a positive multiple ofW
−1
(W

−1
)∗. Hence

this operator is a multiple of the identity,W is unitary up to a factor, and� = (W ⊗ 1l)- is
maximally entangled. Moreover, we see from equation (22) that theUx form a unitary basis.

Since- was an arbitrary maximally entangled vector, we may just as well take- = �,
so equation (21) holds withW = 1l. Hence,�x = c (Ux ⊗ 1l)�, wherec is a factor which
has to be of modulus 1, because� and�x are normalized, andUx is unitary, and which can
be chosen to be 1 by adjusting the phase of�x. This completes the proof.

4. Constructing bases of unitaries

It is not a priori clear that bases of unitary operators should exist in any dimension. Indeed,
the system equation (5) of equations is formally overdetermined, according to the following
rough dimension count. The variables in this system are the unitariesUx, each of which we
can take in the(d2 − 1)-dimensional manifoldSUd, i.e., with det(Ux) = 1, by fixing a phase
factor. Since the transformationsUx �→ V1UxV2, for arbitraryV1, V2 ∈ SUd leave the set of
solutions invariant, we may fixU1 = 1l, and takeU2 diagonal without loss of generality. This
reduces the number of variables to(d−1)+(d2−2)(d2−1). On the other hand, orthogonality
introduces one complex constraint for every pairx �= y. None of these is trivially satisfied
due to the special choices we made, so we have to taked2(d2 − 1) constraints into account.
This leaves, formally,

no of variables− no of equations= −(d − 1)(2d + 1) < 0.

Of course, we know that this count is somehow too crude, because, after all, many inequivalent
unitary bases are constructed below. But it is not so easy to spot the dependences among the
constraints. Note also that the dimension count is essentially the same for bases orthogonal
with respect to a weightρ �= d−11l, but in that case corollary 4 shows that there is no solution
at all.

In order to describe the best known construction for unitary bases [VW], let us introduce
some terminology. We say that a (single) unitary matrix is ofshift and multiply type, if it is
the product of a permutation operator and a diagonal unitary. In other words, every row or
column contains (d − 1) zero entries, and one entry of modulus 1. The bases we will construct
not only have the property that each element is of this type, but also that thed2 values forx
can be split intod options for ‘shift’ andd options for ‘multiply’.
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Definition 8. A shift and multiply basis of unitary matrices in C
d is a collection of

d2 unitary operators Uij , i, j ∈ Id ≡ {1, . . . , d}, satisfying the orthogonality relation
tr(U∗

ijUk�) = d δikδj�, and acting on the basis vectors |k〉 as

Uij |k〉 = H
j
ik|λ(j, k)〉 (23)

where these Hj
ik are complex numbers, and λ : Id × Id → Id .

Proposition 9. The parameters and λ : Id × Id → Id define a shift and multiply basis of
unitary matrices if and only if the following two conditions are satisfied:

(1) Each Hj is a Hadamard matrix, i.e. |Hj

ik| = 1 for all i, k, and Hj(Hj )∗ = d1l.
(2) λ is a Latin square, i.e., the maps k �→ λ(k, �) and k �→ λ(�, k) are injective for every �.

Proof. For Uij to be unitary, it is necessary and sufficient that theH
j

ik are phases, and that
k �→ λ(j, k) is injective (hence bijective) for everyj. For the orthogonality we have to evaluate

tr(U∗
ijUi′j ′) =

∑
k

H
j
ikH

j ′
i′k〈λ(j, k)|λ(j ′, k)〉.

We consider first the casej = j ′. Then the scalar products in the sum are all equal to 1, and
equating this expression toδii′ we find thatHj is Hadamard.

Now let j �= j ′, and consider the ‘coincidence set’C = {k|λ(j, k) = λ(j ′, k)}. Then
orthogonality requires, for everyi, i′, that

0 =
∑
k∈C

H
j
ikH

j ′
i′k =

d∑
k=1

H
j ′
i′k χC(k) (H

j∗)ki = (H j ′
χCH

j∗)i′i , (24)

whereχC(k) = 1 for k ∈ C, and zero otherwise, and in the last lineχC denotes the projection
χC |k〉 = χC(k)|k〉. But sinceHj ′

andHj are Hadamard, and in particular invertible, this
impliesχC = 0. HenceC is empty, and the second injectivity ofλ is proved. �

In order to construct unitary bases of this form, we must now construct Hadamard matrices
and Latin squares of the appropriate dimension. For both of these tasks there is a rich literature,
and below we will give a brief summary on what is known for each.

It is useful to note that each of the structures ‘unitary bases’, ‘Hadamard matrices’ and
‘Latin squares’ has a natural notion ofequivalence, and to some extent these equivalences are
related. We call two unitary basesU, U′ equivalent, ifU ′

x = V1Ux ′V2, for some unitariesV1,
V2, and a relabellingx �→ x ′. Hadamard matrices are called equivalent, if one is obtained from
the other by permuting rows or columns, or multiplying rows or columns with phases. Finally,
a Latin squareλ : Id × Id → Id is equivalent to any other obtained by applying a permutation
on each of the three copies ofId involved. In each case there are also discrete transformations,
such as transposition or complex conjugation (where applicable). It should be noted that
replacing eachHj by an equivalent one, typically only leads to an equivalent unitary basis, if
the equivalence operation is the same for eachj. With j-dependentequivalence transformations
it is possible to construct inequivalent unitary bases ind = 3, although in this dimension there
is only one Hadamard matrix and only one Latin square—up to equivalence. Of course, in
d = 2 all three structures, including the unitary bases, are unique up to equivalence [VW]. The
unique unitary basis is then given by the three Pauli matrices and the identity and, of course
generates, via theorem 1, the usual two qubit examples of teleportation and dense coding.

For each of the three structures we furthermore have an obvious notion oftensor product,
allowing the construction of a unitary basis (resp. a Hadamard matrix or Latin square) in
dimensiond = d1d2, if counterparts in dimensiond1 and dimensiond2 are given.
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In order to show that unitary bases exist in any dimension it is easiest to use group-theory-
based constructions: the Latin square can be taken as the multiplication table of any group
of orderd, for example the cyclic group. The Hadamard matrix can be taken as the matrix
implementing the Fourier transform on an Abelian group of orderd, the standard example
being given once again by the cyclic group of orderd. ThusHk� = exp(2π i

d
k�), wherek and

� are taken modulod. If we combine these data into a unitary basis we get an instance of
what we propose to call aunitary basis of group type (‘nice error basis’ in [Kn]). These are
orthonormal unitary bases with the additional property that the operator product of any two
elements is a third, up to a phase. That is to say, the index setX is a group, and

UxUy = µ(x, y)Uxy (25)

with |µ(x, y)| = 1. In the special case of an Abelian groupX this is a discrete version ofWeyl
systems of unitary operators, named after their continuous variable counterpart, well-known
from quantum optics and non-relativistic ‘phase space’ quantum mechanics.

Latin squares are not completely classified, nor does there seem to be a realistic hope to
do so. A standard work on the subject is [DK], a useful net resource is [Ri]. Counts of squares
are usually done for ‘normalized squares’, in which the first row and column are in natural
order, thus eliminating some trivial freedom. Ind = 5 Euler counted 56 of these, but only 2
are inequivalent, because the symbols themselves can also be permuted. Counts of normalized
squares have now gone all the way up tod = 10, but are no longer done by hand (there are
roughly 7.5 × 1024 [MR]. It is also clear from these numbers that group based constructions
exhaust only a tiny fraction of the possible unitary bases.

Hadamard matrices are also a standard subject in coding theory. However, usually only
the real case (orthogonal matrices with entries±1) is considered. It is easy to see that real
Hadamard matrices exist only in dimension two and multiples of four. Again, the possibilities
for such designs by far exceed the group based possibilities (the characters of an Abelian
group are real only ifd = 2n). A standard reference is [Ag].

For complex Hadamard matrices the Fourier matrices show that there is no constraint on
dimension. The uniqueness ind = 3 is easy to get. The general form ind = 4 is, up to
equivalence 


1 1 1 1
1 1 −1 −1
1 −1 u −u
1 −1 −u u


 (26)

whereu is an arbitrary phase. Foru = 1 this is equivalent to the Fourier matrix of ‘Klein’s Four
Group’, the product of two copies of the two-element group, and foru = i it is equivalent
to the Fourier matrix of the cyclic group. The possibility of embedding the cyclic group
Fourier matrix into a higher dimensional manifold can be generalized to arbitrary composite
numbersd = pq: wheneverVk� is a matrix of phases satisfying the periodicity conditions
Vk,� = Vk+p,� = Vk,�+q, we get a Hadamard matrix as

Hk� = Vk� exp

(
2π i

d
k�

)
. (27)

One might conjecture from this that for prime ordersd the Hadamard matrix is unique.
This problem was discussed by Haagerup [Ha] on the basis of a completely differentmotivation
(theory of von Neumann algebras). There it is shown that ford = 5 there is uniqueness, but
for d = 7 there are at least five solutions. For some primes, uncountably many inequivalent
Hadamard matrices are known.
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