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Abstract

We establish a one-to-one correspondence between (1) quantum teleportation
schemes, (2) dense coding schemes, (3) orthonormal bases of maximally en-
tangled vectors, (4) orthonormal bases of unitary operators with respect to the
Hilbert—Schmidt scalar product and (5) depolarizing operations, whose Kraus
operators can be chosen to be unitary. The teleportation and dense coding
schemes are assumed to be ‘tight’ in the sense that all Hilbert spaces involved
have the same finite dimensiah and the classical channel involved distin-
guishesd? signals. A general construction procedure for orthonormal bases
of unitaries, involving Latin squares and complex Hadamard matrices is also
presented.

PACS number: 03.6%a

1. Introduction

Teleportation and dense coding are two processes, which stood at the beginning of modern
guantum information theory. They both demonstrated radically new features of quantum
information as opposed to classical information, in that both would be impossible without
the assistance of entangled states. Indeed, the attempt of using the properties of a classically
correlated system shared by sender and receiver to improve the transmission rate of a classical
channel can easily be seen to be hopeless. But this is precisely what happens in teleportation
and dense coding, and dramatically so, because without entanglementassistance, teleportation,
i.e., the transmission of quantum information on a classical channel, would not only be less
efficient, but virtually impossible.

In the original papers [BW, BB] the new possibilities were demonstrated by giving an
explicit example, based on qubits. It was clear early on that extensions to systems with higher-
dimensional Hilbert spaces were possible, not only to powers of 2, by running the process
several times, but to any dimension2d < oo [BB].

The task set in this paper is to do this systematically, and to clasBifychemes for
teleportation and dense coding. There are several reasons for doing this. The firstis, of course,
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to take these miracle machines apart and to analyse what makes them work: what is the
mathematical structure one really needs to set up such a scheme? For the present author one
motivation of this kind was to understand the surprising observation that each of the published
teleportation schemes also works as a dense coding scheme, and conversely: sender Alice and
receiver Bob merely have to swap the equipment they use. An attempt at a direct proof of this
failed, and indeed, as discussed below, the statement fails in general, but is true in the special
case of ‘tight’ schemes.

The second reason for attempting a complete classification of teleportation schemes
is more practical. In spite of amazing progress in recent years, experiments in quantum
information processing are still quite difficult. Hence, for realizing a teleportation scheme it
is useful to have a systematic overview of the options, before going on to find the one which
is the easiest to implement. This also goes for approximate realizations. And in order to find
feasible approximate teleportation schemes it is probably once again necessary to understand
the manifold of exact realizations.

The aim of determining all schemes is not quite achieved in this paper, in two respects.
Firstly, we will only look at the case when dense coding and teleportation are realized optimally
with minimal resources, in the sense of Hilbert space dimensions and number of distinguishable
classical signals. As in the well-known qubit case, this means that an entangled state between
systems of the same dimensidras the input systems is used, and the classical channel
distinguishes?? signals. That is, the classical capacity of the quantum channel is exactly
doubled by dense coding, and teleportation requires twice as much classical channel capacity
as the quantum capacity of the channel set up by this scheme. We will call schemes with
these dimension parameteight. As mentioned above, for these dimensions the symmetry
between teleportation and dense coding holds perfectly. Classifying all schemes beyond the
tight case appears to be more difficult because there is too much freedom, which cannot be
parametrized in a simple way (see, however, [BD]).

The second respect in which this paper falls short of a complete classification is that we can
only reduce it to another ‘standard’ problem, namely the construction of orthonormal bases of
unitary operators with respect to the scalar proddctB) — d~1tr(A*B). Inthe final section
we provide a fairly general construction for such bases. However, even this construction has
to rely on other well-known but not completely classified combinatorial designs, namely
Latin squares, and complex Hadamard matrices. This suggests that a complete construction
procedure for all unitary bases would be at least as difficult as a complete classification of
Latin squares or Hadamard matrices, and hence hardly a promising task.

The paper is organized as follows. In section 2 the main theorem is stated: an equivalence
in the tight case between teleportation schemes, dense coding schemes, orthonormal unitary
bases, bases of maximally entangled vectors, and so-called unitary depolarizers. Basic
consequences of the theorem are discussed. Section 3 contains the proof, divided into
subsections, each devoted to some implication in the big equivalence. In writing the proof
an attempt was made to include also simple steps explicitly, and to make as transparent as
possible why the tightness condition is crucial. Finally, in section 4 we present the ‘shift and
multiply’ construction of unitary bases, which are then classified in terms of Latin squares and
Hadamard matrices.

2. Main result

In order to state our result we use the following notation and terminology: Whés a
Hilbert space, we denote l§(H) the space of bounded linear operatorston A channel
converting quantum systems with Hilbert spag¢g into systems with Hilbert spadeqytis a
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linear operatof : B(Hout) — B(Hin), which is completely positive [Da, Pa] and normalized
asT(1) = 1. A (discrete)observable F on H over an output parameter spakeis a
collection of positive operator8, € B(H) such that) . F, = 1. A density operator on

'H is a positive operator with trace 1. The bagiobabilistic interpretation of these objects

is fixed by the prescription that(tn7 (F,)) is the probability to get the measuring resuit *
on systems prepared accordingdpbefore passing through the chanieFinally, we call a
vector¥ € H ® H maximally entangled, if it is normalized, and its reduced density operator
is maximally mixed, i.e., a multiple af :

(W[(A® 1)) = (dimH) " tr(A). (1)

Let us set up the equations describing dense coding and teleportation in this language. In
both cases, the beginning of each transmission is to distribute the parts of an entangled state
between sender Alice and receiver Bob. Only then Alice is given the message she is supposed
to send, which is a quantum state in the case of teleportation and a classical value in case of
dense coding. She codes this in a suitable way, and Bob reconstructs the original message
by evaluating Alice’s signal jointly with his entangled subsystem. dease coding, assume
thatx € X is the message given to Alice. She encodes it by transforming her entangled
system by a channél,, and sending the resulting quantum system to Bob, who measures an
observable jointly on Alice’s particle and his. The probability for gettingas a result is
then t(w (T, ® id)(Fy)), where the ®id’ expresses the fact that no transformation is done to
Bob’s particle while Alice applied, to hers. If everything works correctly, this expression
has to be 1 fox = y, and 0 otherwise (see equation (3)).

Let us take a similar look agleportation. Here three quantum systems are involved: the
entangled pair in state, and the input system given to Alice, in stateThus the overall initial
state isp ® w. Alice measures an observatfieon the first two factors, obtaining a result
sent to Bob. Bob applies a transformatifyto his particle, and makes a final measurement of
an observabld of his choice. Thus the probability for Alice measuringnd for Bob getting
aresult ‘'yes' om, is tr(p ® w)(Fy ® T, (A)). Note that the tensor symbols in this equation
refer to different splittings of the system €23 and 129 3, respectively). Teleportation is
successful if the overall probability for gettig computed by summing over all possibilities
x, is the same as for an ideal channel, i.€o #), as in equation (2).

The only relationship between the Hilbert spaces involved, which this description requires,
is that the input and output spaces of the teleportation line are the same, since the whole
teleportation process is equivalent to the identity. In some sense the best results (minimal
dimension for the Hilbert spaces carrying the entangled state, best ratio of achieved capacity
to capacity used) are obtained in the special case, where all Hilbert spaces have the same
dimensiond, and exactly X| = d? signals are distinguished. We call this ttghr case, and
the main theorem refers only to this case.

Theorem 1. Let H be a d-dimensional Hilbert space (d < 00), and X a set of d? elements.
Consider the following types of objects:
(1) Teleportation schemes, consisting of

e a density operator w on H @ H

e a collection of channels Ty : B(H) — B(H),x € X

e an observable Fy,x € X on H ® H such that, for all density operators p on H, and
A € B(H):

Y tr(p ® ) (Fx ® Ti(A)) = trpA. 2)

xeX
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(2) Dense coding schemes, consisting of the same objects as a teleportation scheme, but
satisfying, instead of (2), the equation

tr(o(Ty ® |d)(Fy)) = 8xy- (3)

(3) Bases of maximally entangled vectors, i.e., families of maximally entangled vectors
O, e H® H,x € X such that

(Dy|Dy) = By (4)

(4) Bases of unitary operators, i.e., collections of unitary operators Uy € B(H), x € X such
that

tr(UFUy) = déyy. (5)

(5) Unitary depolarizers, i.e., collections of unitary operators U, € B(H),x € X such that
forany A € B(H):

> UFAU, = dtr(A)1. (6)

Then, given any object of any one of these types, one can construct an object of each of the
types, using the following equations:

w = Q)| with Q maximally entangled. (7
Fx=|q>x>(q>x| (8)
Te(A) = U AU, )
o, = (U; ® 1)Q. (10)

The logical structure of this result is maybe slightly unusual, so we begin by giving some
examples of how it is used. We can use it, for example, as a construction procedure: once
we are given a unitary basis, we can obtain from equations (7)—(10) a teleportation scheme
and a dense coding scheme. Moreover, since we could also start with these schemes, ending
up with the unitary basis we are assured thaty teleportation or dense coding scheme is
obtained in this way, i.e., this construction is exhaustive. In particular, we learn that any tight
teleportation scheme is necessarily of a very special form: the entangled statst be pure
and maximally entangled, the chann&lsmust be unitarily implemented, and the observable
F must be a complete von Neumann measurement.

Another result contained in this theorem is the amazing equivalence between (1) and
(2): any teleportation scheme works as a dense coding scheme, and conversely. Alice and
Bob merely have to swap their equipment to convert one into the other. We must emphasize,
however, that the tightness condition is absolutely crucial for this equivalence. For simplicity,
we will discuss this only in the case thaf| = n is not fixed to be/?, leaving aside the more
difficult question what kind of trade-off between resources becomes possiblewlives on
'H1 ® Ho, with dimensions other thah® d.

The basic difference between teleportation and dense coding is that the parahagigrs
n have opposite roles: for teleportatiahdescribes the size of the signal to be sent, and
describes a resource, so the problem becomes more difficult when we ind aasdecrease
n. For dense coding, it is exactly the opposite. Therefore, it is easy to show that teleportation
(resp. dense coding) schemes exist wheneverd? (resp.n < d?). In fact, for teleportation
one can takeX to be a continuum, and replace the sum in the teleportation equation by an
integral [BD], but the dense coding equation would make no sense then. The optimality of
these dimension inequalities, i.e., that no teleportation (resp. dense coding) scheme exists
with n < d? (resp.n > d?), is also a corollary of theorem 1. To prove it, suppose we had
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a teleportation scheme with < d2. Then we could add#€ — ) irrelevant classical signals
happening with probability zeroff = 0), and apply the theorem, which says thatAll

must be non-zero after all. The same reasoning works for dense coding with the operation of
throwing in a few unused Hilbert space dimensions.

Of course, our theorem is efficient as a construction procedure for dense coding and
teleportation schemes only to the extent that unitary bases can be generated. After giving the
proof of the theorem, we will therefore describe the most general construction for such bases
known to us.

3. Proof of theorem 1

3.1. Proof of the implications ‘3 <=4’

Implicit in the formulation of the theorem is the claim that equation (@Q)= (U, ® 1)Q

not only determine®, in terms ofU, but also, conversely, determingsin terms ofd,. This
connection is based on a general construction, by which&heatrix elements of an operator

A 1 H — 'H are identified with th&’> components of a vectob. This identification depends

on the choice of a maximally entangled vectorBy choosing appropriate orthonormal bases
e, k=1,...,d,inthe first and second tensor factor, such a vector can be written in ‘Schmidt
form’ as

Q:%Xk:ek@)ek. (11)

Then a one-to-one correspondence between operatar8(H) and¥ € ‘H ® H is given by
the equationiex|Aes) = Vd(ex ® e¢|W¥). We will use this in the form

V=(A1)Q=10ANHQ (12)
where the transpose operatidn— AT is defined in the basig,. Then ifA and ¥ and,
similarly, A’ andW¥’ are related in this way,

(W|(B® L)V = 3tr(A*BA’) (13)

for arbitrary B € B(H). ThusW¥ is maximally entangled iff this expression (far= A’)

is equal tod~! tr(B), i.e., iff A is unitary. Moreover, setting = 1, the scalar product of
vectorsw, ¥’ is translated ta ~tr(A*A’) in terms ofA, A’. Taking all this together, we get the
one-to one correspondence between unitary bases and bases of maximally entangled vectors,
as claimed. Note, however, that this correspondence depends on the choice of the reference
maximally entangled vectde.

3.2. Proof of the implications ‘4 <=5’

This proof is relatively straightforward, since we are talking about only one type of objects,
collections ofd? unitariesU, € B(H). Itis, however, also a crucial step for the entire proof,
since it is here that the consequences of the tightness condition are seen. We will prove this in
aform which is also needed later to establish that the atateeleportation and dense coding
schemes is necessarily maximally entangled.

The basic observation concerning matching dimensions is the following.

Lemma 2. Dvectors ¢1, . .., ¢p in a D-dimensional Hilbert space form an orthonormal basis
if and only if

D
> I (gl = 1. (14)

k=1
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Of course, this is false when there are more vectors than the dimension of the Hilbert
space. Such families of vectors are called ‘over-complete’. They exist and are an interesting
mathematical structure of their own. On the other hand, fewer vectors than the dimension can
never satisfy (14), because the rank (dimension of the range) of the operator on the left-hand
side is at most the number of vectors.

Proof. It is a well-known fact that (14) holds for any orthonormal basis. Conversely, we find
from (14) that, for eaclt, |¢)(¢x| < 1, which is the same a¢;||2 < 1. On the other
hand, taking the trace of (14), we ggt, [lpxl|? = tr(1) = D. This is only possible when
ll¢x||2 = 1forallk. Hence the operatofgy) (¢« | are Hermitian projections, and we can invoke
the observation that Hermitian projectignsp, with p1+ p2 < 1 are necessarily orthogonal.
(For a quick proof, sandwich the inequality between factardinding p1 + p1p2p1 < p1,

i.e., p1p2p1 = (p2p1)*(p2p1) < 0, and hencgzp; = 0.) O

We now apply this lemma to a collection Bf = 42 operators in3(H), where this space
is considered as a Hilbert space with a suitable scalar product.

Proposition 3. Consider d? operators K1, . . ., K ;2 on a d-dimensional Hilbert space H, and
let R > 0 be an invertible operator on H.
Then the following conditions are equivalent

(1) t(KR7IKy) = 8yy, forx,y =1,...,d?
(2) Y., KiCK, =tr(RC)1 forall C € B(H).

Proof. Let us define a scalar product:) g on B(H) by
(A|B)g = tr(A*R™1B). (15)

Sincer is positive and invertible, this is indeed a scalar product, satisfyig )z = 0 only

for A = 0. Condition 1 then simply says that tkgare an orthonormal basis. By the previous
lemma this is equivalent to the completeness relation (14), so all we have to do is to show that
this relation, adapted to the special scalar product at hand, is equivalent to condition 2 of the
present lemma. The completeness relation is that, forday € B(H),

(AIB)r =) (AIK:)r(K(|B)g. (*)
It suffices to evaluate this on rank one operatérs8 € B(H), since these span the whole
space. We takel = |¢p1)(¢2| and B = |y1)(¥2]. Then the left-hand side of equatio#) (
becomes

(p1lR™ 1) (Y2l 2) (xLHS)
whereas the right-hand side is
> (@1IR K ) (Y2l KFR ™M pr1) = (ra| Mepo) (*RHS)

X

with
M= KIRMy) (g1l RK, = ) KICK,
x X

where we have interchanged the two factors in each term, and introduced the abbreviation
C. Since ¢LHS)=(*RHS) for everyy,, ¢, we find M = (p1|R 1y1)1. The factor is
readily identified ag¢1|R~1y1) = tr(RC). Since operators of the fori@i spanB(H), the
completeness relation thus becomes equivaleRt{ok *CK, = tr(RC)1 for all C, which
completes the proof. O
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The special case of this proposition, where e&glis unitary andR = ;1,1, is exactly
the relationship between items 4 and 5 of theorem 1. However, there is another consequence
needed later on:

Corollary 4. Let Uy, ..., Uy € B(H) be unitaries in a d-dimensional Hilbert space H, and
p a density operator such that tr(U} pUy) = 8xy. Then p = d-11.

Proof. Since thel, are an orthonormal set whose cardinality is the dimension, there can be no
null vectors of this scalar product, i.e(4*pA) = OimpliesA = 0. Hencep is invertible, and

we can apply the previous proposition with= p~1, finding that}" U*AU, = tr(p~1A)1.

The trace of this equation i&tr(A) = d tr(p—1A). This holds for all4, i.e.,p~1 =d1. O

3.3. Proof of (3 or4) — (1 and 2)’

Suppose now we are given either a basis of unitary operators or of maximally entangled
vectors. Then we can choose a maximally entangled veetand use equation (10) as in

the proof of ‘3— 4’ to define the other kind of basis. Equations (8) and (9) then become
explicit definitions of the observablg, and the transformations,, respectively, so all the
objects needed for a teleportation or dense coding scheme are defined, and we only need to
verify that equations (2) and (3) are indeed satisfied.

In the teleportation equation an expectation value is generated between a state on the first
and an observable on the third factor of a triple tensor product. This is a consequence of a
similar ‘teleportation equation’ on the level of vectors, which we now state. For later use we
prove a certain converse at the same time.

Lemma 5. Let Q© € C? ® C¢ be the maximally entangled vector Q@ = d~/2 ek ® ek,
where ey, k = 1, ...,d is the standard basis of C4 LetM € B(Cd), and € C. Then the
equation

PRQALIM L)L Y) = niply)
holds for all ¢, € C?, if and only if M = du 1.

Proof. Inserting the sum definin@ we get

1
(¢®Q(1®M®1)Q®¢)=EZ@@&(®6K|(1®M®jl)ee®ee®lﬁ)
ke

1

1
= = D (@len)exlMer)(exlr) = Z(9IM )
/24

which is equal tqu(g|y) for all ¢, v iff MT = dud. O

Consider now the term with index € X in the teleportation equation (2), with
F, and T, defined via equations (8), (9), and (10). Without loss of generality we set

p = |$1){(¢2], A = |¥r1)(¥2|. Then
term, = (2 ® QP ® U Y1) (P ® U 2|91 ® Q).
The first scalar product can be rewritten by substitutimdrom equation (10), using equation
(12):
(P2 ® QP ® Us 1) = (2 ® (1L ® Un))((Ux @ DQ) ® 1)
= (p2® (U] @ HD)I(1 ® U])Q) ® y1)
=(1RUI®Dpke(leUl 1)Q® y1)

1
= (2R QLR Y1 = 3(¢2W1),
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where inthe last equation we used lemma 5 with 1/d. Together with a similar computation
for the second scalar product, we getternd 2 (¢ | V1) (Y2|p1) = d—2tr(pA), and equation
(2) follows by summing oved? equal terms.

Similarly, for thedense coding equation (3) we get

tr(w(T, ®id)(Fy)) = (QUU; @ Py )(Dy (U, ® 1)),
i.e., the absolute square of the scalar product

1
(QUUY ® D)Py) = (QU{Uy ® 1)Q) = gtf(U;‘Uy) = bxy,

where we have used in turn equation (10), the maximal entangledn@gseé equation (1)),
and the orthogonality of th&,. This completes the proof of the dense coding property.

3.4. Proof of the implications ‘2 = rest’

Let us now assume that a dense coding scheme is given. We have to conclude that it is of the
special form given in equations (7)—(10).

Note first that ifo = ), Aewe (Ao > 0) is @ mixture of states satisfying the teleportation
equation, then every,, also satisfies it. Hence the assumption is also satisfied for each pure
componenty,, and we can first analyse the problem assumirig be pure. In order to show
thatw indeed is pure, we only have to verify that the giver are consistent only with one
pure state. So for the moment we will assume that |Q2) (2| is pure.

The next step is a simple general observation on the coding of classical information on
guantum channels, which we isolate in a lemma.

Lemma 6. Let K be a D-dimensional Hilbert space, and oy, Fy € B(K), for x € X, a
set with D elements. Suppose that each oy is a density operator, F is an observable, and
tr(ox Fy) = 8xy, for x,y = 1,..., D. Then there is an orthonormal basis ®, € 'H such that

ox = Fy = [®y)(Px|.

Proof. Let @, be one of the normalized eigenvectorsfwith non-zero eigenvalue. Then
sinceF, < 1, and(®,|F,®,) = 1, &, must also be an eigenvectorBf with eigenvalue 1.
Similarly, for anyy # x the Fy > 0, and the normalizatiop . F, = 1 forcesF,®, = 0.
Hence theb, are orthonormal, and since their number is the dimension of the space, they must
be a basis. Consequently we have jointly diagonalizedrthend theo ., with eigenvalues
either O or 1. O

We apply this lemma wittD = 42 ando, the state after application df, to the first
factor, i.e., tto, A) = tr(w(T; ® id)(A)). This proves equation (8), although it remains to be
seen that eactp, is maximally entangled.

Since thes, form a maximal set of pure states, there cannot be a non-zero proj@ction
such that, for alk € X,

0 = tr(ox (1 ® P)) = tr(w(T; ®id)(1 ® P))
=tr(w(1 ® P)) = (Q(1 ® P)).

HenceQ must havefull Schmidt rank. We will need the consequence that the equation
(AR 1)Q =(A"®1)QimpliesA =A’.

LetT (A) =), K} ,AK, o be the Kraus decomposition &f. Then the teleportation
equation is

> HQIKS , @ DD,) 7 =6,y
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Therefore (K, ® 1)Q2|®,) = O for all y # x, and for every there must be constants
such that

(Kx,a Q@ L)L =co Py . (16)

SinceQ has full Schmidt rank, this implies that &l, , are proportional to each other, i.e.,
thatT, can be written with a single Kraus summand. Of course, the correspokdiag U,
must be unitary, and since both sides are normalized, equatio®(18) (U, ® 1)$2, possibly
after fixing suitable phase factors (which influence neitiaror F.,).

The orthonormality of theb, translates into tpU;U,) = §,,, wherep is the reduced
density operator of. But then corollary 4 shows that must be a multiple of the identity,
i.e., 2, and eachd, is maximally entangled.

Finally, we have to complete the argument for the puritywdfy showing that only one
pure state is consistent with the other dgt#, encoded inJ/,. But this is obvious from the
explicit expressiom = (U} @ 1)®P,.

3.5. Proof of the implications ‘1 —> rest’

Let us now assume that a teleportation scheme is given. We have to conclude that it is of the
special form given in equations (7)—(10).

The crucial input for this proof is the principle that in quantum mechanics there is no
measurement without perturbation. It enters in the following form, a corollary of the so-called
Radon—Nikodym theorem for completely positive maps. We state it here as a lemma.

Lemma 7. Let 'H be a finite dimensional Hilbert space, and let T, : B(H) — B(H) be
completely positive maps such that ), T, = id. Then there are positive numbers to, such that
T, = tyid.

Proof. For readers less familiar with dilation theory of cp-maps we include a quick proof based
on the Kraus decompositidn(A) = Zﬂ K;;AK,B, which exists for every completely positive
map. Note that by decomposing eathin Kraus form, we get a finer decomposition of id,

so we may as well prove the lemma for the case that &adhof the form7, (A) = K} AK,.

With A = [y) (¥,

Ky ) (Kg¥r| < Z |Ka) (UKo = V) (V] .
HenceK vy = A(y)y, with a factori(y) € C. But thenevery vectory is an eigenvector of
the linear operatok , which is only possible ik} is a multiple of the identity. O

A collection of completely positive maps adding up to a normalized one should be
understood as an ‘instrument’ in the terminology of Davies [Da], i.e., a device which produces
classical measurement results, ‘such that the probability for obtaining this resultd a
response to a subsequent measurerfieoih an input state is tr(p7x(F))). The channel
>« T then describes the overall state change, when the measuring results are ignored. In
this language the hypothesis of the lemma says that there is no overall state change through
the device, i.e., ‘no perturbation’ of the system. The conclusion is that in that case the output
probabilities arey, and independent of the input state, i.e., no information about the system is
obtained.

As a first application, we conclude exactly as in the previous subsection that each convex
component of the state again satisfies the teleportation equation. Hence we can once more
assume thab = |Q)(Q2| is a pure state. The argument tifats then uniquely determined by
the other data, and hence thats pure is the same as in the dense coding case.
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Clearly, this kind of argument is also useful for decompositionB,air F, into sums of
(completely) positive terms. To do this systematically, fix a maximally entangled unit vector
E, so that vectors it ® H become expressed ds= (A ® 1)E for a uniquely determined
operatorA (see equation (12)). In particular, we can wif2e= (W ® 1)Z, and the Kraus
decomposition and spectral decomposition of efgcim the form

T (A) = Z K} AK o (17)
o

Fr =) (Avp®D)IENE|(Arp ® 1)*. (18)
B
Inserting this into the teleportation equation (2) we find a sum evet, 8, in which each
term represents a completely positive operator, and which sum up to the identity. Hence by
lemma 7, each term has to be multiple of the ideniity,, gid, say. This can be written in
terms of scalar products, if we take= |¢1) (¢p2| andA = [yr1) (Vr2]:

fx.o.p tr(pA) = fLy o p(P2, Y1) (Y2, 1)

=(2®Q (A p®L K ER®Y1NE® Y2, (A7 s ® 1 ® K o)1 ® Q).
Note that the two scalar products on the right-hand side are complex conjugates of each other
apart from a swapping of the argumeis, v1) and (Y2, ¢1), which exactly matches the
variable pairing on the left-hand side. Since the equation is to hold for arbitrary vectors
@1, 92, Y1, Y2, we can hold one pair fixed and find that

($2® R, (Axp®L® K} )E ® Y1) = hxa,p (2, Y1), (19)
wherepu, o, g is a factor determined in terms pf and the scalar products involvirig>, ¢1).
With @ = (W ® 1) E, and equation (12) we get
(23R, (A p LK )E® Y1)

= (21 ®Ko)E (W' ®@1L)((Ars ®@1L)E® y1))
= ($2® (K], ® DE, (1 ® W*® 1)(L ® AL ))E® y1))
=($2®E8 AR®K WAL ;@ 1E® Y1)

= Ux,a,p(P2, Y1)

where we have used the notati&n= (K*)7 for the matrix elementwise complex conjugation
in the Schmidt basis belonging to the maximally entangled &at8ince the above equation
holds for allg, andy1, lemma 5 implies that

Kx,(xW*A;ﬂ = dﬂx,(x,ﬁj]-v (20)

forall x, o, B.

Let us say that a label € X contributes to teleportation, if the corresponding term in
the teleportation equation does not vanish fopadindA. This is equivalent to saying that for
somew, B the factoru, o g is non-zero. For such tripleg, «, 8) all three operators on the
left-hand side of equation (20) have to be invertible.

Now since there has to be at least one contributing laldélas to be non-singular, which
means tha® hasfull Schmidt rank. Equivalently, the reduced density operatarfor the first
factor has no zero eigenvalues. From this we conclude that the non-contributing labels are
precisely those for whicli, = 0. Indeed, we may set = p = 1, and use the normalization
of T, to find

O=tr(1 ®@w)(Fy ® 1)) = tr(1 ® w1) Fx)
SinceF, > 0, andl ® w1 has only strictly positive eigenvalues, this implies= 0.
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Now letx be a contributing index, and choose some triplex, 8) with r, o g # O.

If we now look at equation (20) for tripleéx, o', B) with arbitrary o/, we getK, , =
(Ux,a’,p/1x.0,8)Kx a, 1.€., @ll Kraus operators df, are proportional, and hendg can be
written with a single Kraus summanti, (A) = U} AU,, with a unitaryU,.

Similarly, we find that allA, g are proportional, which means th&t = |, )(®,| with
&, = (A, ® 1)E.

We can now apply lemma 2 to these vectdrs setting®, = 0 for non-contributing
labels. The conclusion is that thie, are an orthonormal basis. In particular, all indices do
contribute after all.

Equation (20) and the unitarity @f, allow us to expresa, in terms ofU,:

Ay =dpy UW T (21)

Orthonormality of thed, becomes

1 _ —1—1
by = SU(ATAY) = diicpy r(UW (W )" UY). (22)

Forx = y we find that 1| is independent of, hence the operato(gy /|« DU are unitary,

and satisfy the hypothesis of corollary 4 wjtha positive multiple of _l(W_l)*. Hence
this operator is a multiple of the identit}/ is unitary up to a factor, an@® = (W ® 1)E is
maximally entangled. Moreover, we see from equation (22) that/tfferm a unitary basis.

SinceE was an arbitrary maximally entangled vector, we may just as well Bake 2,
so equation (21) holds with¥ = 1. Hence,®, = ¢ (U, ® 1), wherec is a factor which
has to be of modulus 1, becau®eand @, are normalized, and, is unitary, and which can
be chosen to be 1 by adjusting the phaséaf This completes the proof.

4. Constructing bases of unitaries

It is nota priori clear that bases of unitary operators should exist in any dimension. Indeed,
the system equation (5) of equations is formally overdetermined, according to the following
rough dimension count. The variables in this system are the unitdfjiesach of which we

can take in théd? — 1)-dimensional manifoldUy, i.e., with detU,) = 1, by fixing a phase
factor. Since the transformationg — V1U, V>, for arbitraryVy, Vo € SU,; leave the set of
solutions invariant, we may fik'; = 1, and takel/, diagonal without loss of generality. This
reduces the number of variablegib— 1) + (d%2 — 2)(d?—1). On the other hand, orthogonality
introduces one complex constraint for every paigz y. None of these is trivially satisfied
due to the special choices we made, so we have tod&i® — 1) constraints into account.
This leaves, formally,

no of variables- no of equations= —(d — 1)(2d +1) < 0.

Of course, we know that this count is somehow too crude, because, after all, many inequivalent
unitary bases are constructed below. But it is not so easy to spot the dependences among the
constraints. Note also that the dimension count is essentially the same for bases orthogonal
with respect to a weight # d 11, but in that case corollary 4 shows that there is no solution
at all.

In order to describe the best known construction for unitary bases [VW], let us introduce
some terminology. We say that a (single) unitary matrix isioft and multiply type, if it is
the product of a permutation operator and a diagonal unitary. In other words, every row or
column containsd — 1) zero entries, and one entry of modulus 1. The bases we will construct
not only have the property that each element is of this type, but also thaf tredues forx
can be split intaZ options for ‘shift’ andd options for ‘multiply’.
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Definition 8. A shift and multiply basis of unitary matrices in C¢ is a collection of
d? unitary operators Uij,i,j € 1g = {1,...,d}, satisfying the orthogonality relation
tr(Ul?'} Uie) = d 8ikd e, and acting on the basis vectors |k) as

Uijlk) = HA LG, k) (23)

where these Hl-]k are complex numbers, and A > Iy x I — 1.

Proposition 9. The parameters and ) : I; x 15 — I define a shift and multiply basis of
unitary matrices if and only if the following two conditions are satisfied:

(1) Each H/ is a Hadamard matrix, i.e. |Hl.f,'<| = 1foralli, k, and H (H/)* = d1.
(2) X is a Latin square, i.e., the maps k — A(k, £) and k — A(L, k) are injective for every (.

Proof. For Uj; to be unitary, it is necessary and sufficient that H}é are phases, and that
k — A(J, k) isinjective (hence bijective) for evefyFor the orthogonality we have to evaluate

(U U ) = Y HiHi (G RIAG ).
k

We consider first the case= j’. Then the scalar products in the sum are all equal to 1, and
equating this expression &g we find thatH/ is Hadamard.

Now let j # j’, and consider the ‘coincidence s€t’' = {k|A(j, k) = A(j’,k)}. Then
orthogonality requires, for eveliyi’, that

d
0= HjH), =3 Hl xctk) (H™ = H xcH™");, (24)
keC k=1
whereyxc (k) = 1 fork € C, and zero otherwise, and in the last lipe denotes the projection
xclk) = xc(k)|k). But sinceH/ and H/ are Hadamard, and in particular invertible, this
implies xc = 0. HenceC is empty, and the second injectivity bfis proved. 0

In order to construct unitary bases of this form, we must now construct Hadamard matrices
and Latin squares of the appropriate dimension. For both of these tasks there is arich literature,
and below we will give a brief summary on what is known for each.

It is useful to note that each of the structures ‘unitary bases’, ‘Hadamard matrices’ and
‘Latin squares’ has a natural notionafuivalence, and to some extent these equivalences are
related. We call two unitary basés U’ equivalent, ifU, = V1U, V2, for some unitarie®,

Vo, and arelabelling — x’. Hadamard matrices are called equivalent, if one is obtained from
the other by permuting rows or columns, or multiplying rows or columns with phases. Finally,
alatinsquare. : I; x I; — I, is equivalent to any other obtained by applying a permutation
on each of the three copiesigfinvolved. In each case there are also discrete transformations,
such as transposition or complex conjugation (where applicable). It should be noted that
replacing eactH/ by an equivalent one, typically only leads to an equivalent unitary basis, if
the equivalence operation is the same for gabtiith j-dependent equivalence transformations

it is possible to construct inequivalent unitary bases #a 3, although in this dimension there

is only one Hadamard matrix and only one Latin square—up to equivalence. Of course, in
d = 2 all three structures, including the unitary bases, are unique up to equivalence [VW]. The
unique unitary basis is then given by the three Pauli matrices and the identity and, of course
generates, via theorem 1, the usual two qubit examples of teleportation and dense coding.

For each of the three structures we furthermore have an obvious notwnaf product,
allowing the construction of a unitary basis (resp. a Hadamard matrix or Latin square) in
dimensiond = didy, if counterparts in dimensiaty and dimensioml, are given.
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In order to show that unitary bases exist in any dimension it is easiest to use group-theory-
based constructions: the Latin square can be taken as the multiplication table of any group
of orderd, for example the cyclic group. The Hadamard matrix can be taken as the matrix
implementing the Fourier transform on an Abelian group of oefjehe standard example
being given once again by the cyclic group of ordeThusHy, = exp(%kz), wherek and
¢ are taken moduld. If we combine these data into a unitary basis we get an instance of
what we propose to call anitary basis of group type (‘nice error basis’ in [Kn]). These are
orthonormal unitary bases with the additional property that the operator product of any two
elements is a third, up to a phase. That is to say, the indekised group, and

Ux Uy = u(x, y)ny (25)

with |u(x, y)| = 1. In the special case of an Abelian groxithis is a discrete version dfey!
systems of unitary operators, named after their continuous variable counterpart, well-known
from quantum optics and non-relativistic ‘phase space’ quantum mechanics.

Latin squares are not completely classified, nor does there seem to be a realistic hope to
do so. A standard work on the subject is [DK], a useful net resource is [Ri]. Counts of squares
are usually done for ‘normalized squares’, in which the first row and column are in natural
order, thus eliminating some trivial freedom. dn= 5 Euler counted 56 of these, but only 2
are inequivalent, because the symbols themselves can also be permuted. Counts of normalized
squares have now gone all the way uplte- 10, but are no longer done by hand (there are
roughly 75 x 10?4 [MR]. Itis also clear from these numbers that group based constructions
exhaust only a tiny fraction of the possible unitary bases.

Hadamard matrices are also a standard subject in coding theory. However, usually only
the real case (orthogonal matrices with enteel) is considered. It is easy to see that real
Hadamard matrices exist only in dimension two and multiples of four. Again, the possibilities
for such designs by far exceed the group based possibilities (the characters of an Abelian
group are real only iff = 2"). A standard reference is [Ag].

For complex Hadamard matrices the Fourier matrices show that there is no constraint on
dimension. The unigueness dh= 3 is easy to get. The general formdn= 4 is, up to
equivalence

1 1 1 1

1 1 -1 -1

1 -1 u —u (26)
1 -1 —u u

whereu is an arbitrary phase. For= 1 thisis equivalent to the Fourier matrix of ‘Klein’s Four
Group’, the product of two copies of the two-element group, and:fer i it is equivalent

to the Fourier matrix of the cyclic group. The possibility of embedding the cyclic group
Fourier matrix into a higher dimensional manifold can be generalized to arbitrary composite
numbersd = pg: wheneverVy, is a matrix of phases satisfying the periodicity conditions
Vi,e = Visp,e = Vi e+¢, We get a Hadamard matrix as

27i
Hyo = Vi exp(% kﬁ). (27)

One might conjecture from this that for prime ordérthe Hadamard matrix is unique.
This problemwas discussed by Haagerup [Ha] on the basis of a completely different motivation
(theory of von Neumann algebras). There it is shown that/fer 5 there is uniqueness, but
for d = 7 there are at least five solutions. For some primes, uncountably many inequivalent
Hadamard matrices are known.
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